Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37703004

RESUMO

T follicular helper (Tfh) cells are essential for the development of germinal center B cells and high-affinity antibody-producing B cells in humans and mice. Here, we identify the guanine nucleotide exchange factor (GEF) Rin-like (Rinl) as a negative regulator of Tfh generation. Loss of Rinl leads to an increase of Tfh in aging, upon in vivo immunization and acute LCMV Armstrong infection in mice, and in human CD4+ T cell in vitro cultures. Mechanistically, adoptive transfer experiments using WT and Rinl-KO naïve CD4+ T cells unraveled T cell-intrinsic GEF-dependent functions of Rinl. Further, Rinl regulates CD28 internalization and signaling, thereby shaping CD4+ T cell activation and differentiation. Thus, our results identify the GEF Rinl as a negative regulator of global Tfh differentiation in an immunological context and species-independent manner, and furthermore, connect Rinl with CD28 internalization and signaling pathways in CD4+ T cells, demonstrating for the first time the importance of endocytic processes for Tfh differentiation.


Assuntos
Antígenos CD28 , Fatores de Troca do Nucleotídeo Guanina , Humanos , Animais , Camundongos , Transdução de Sinais , Diferenciação Celular , Transferência Adotiva
2.
Front Immunol ; 12: 535039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815354

RESUMO

The BTB zinc finger transcription factor MAZR (also known as PATZ1) controls, partially in synergy with the transcription factor Runx3, the development of CD8 lineage T cells. Here we explored the role of MAZR as well as combined activities of MAZR/Runx3 during cytotoxic T lymphocyte (CTL) and memory CD8+ T cell differentiation. In contrast to the essential role of Runx3 for CTL effector function, the deletion of MAZR had a mild effect on the generation of CTLs in vitro. However, a transcriptome analysis demonstrated that the combined deletion of MAZR and Runx3 resulted in much more widespread downregulation of CTL signature genes compared to single Runx3 deletion, indicating that MAZR partially compensates for loss of Runx3 in CTLs. Moreover, in line with the findings made in vitro, the analysis of CTL responses to LCMV infection revealed that MAZR and Runx3 cooperatively regulate the expression of CD8α, Granzyme B and perforin in vivo. Interestingly, while memory T cell differentiation is severely impaired in Runx3-deficient mice, the deletion of MAZR leads to an enlargement of the long-lived memory subset and also partially restored the differentiation defect caused by loss of Runx3. This indicates distinct functions of MAZR and Runx3 in the generation of memory T cell subsets, which is in contrast to their cooperative roles in CTLs. Together, our study demonstrates complex interplay between MAZR and Runx3 during CTL and memory T cell differentiation, and provides further insight into the molecular mechanisms underlying the establishment of CTL and memory T cell pools.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Memória Imunológica/imunologia , Proteínas de Neoplasias/imunologia , Proteínas Repressoras/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/metabolismo , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/virologia
3.
J Autoimmun ; 119: 102610, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621930

RESUMO

CD4+ T cell trafficking is a fundamental property of adaptive immunity. In this study, we uncover a novel role for histone deacetylase 1 (HDAC1) in controlling effector CD4+ T cell migration, thereby providing mechanistic insight into why a T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis (EAE). HDAC1-deficient CD4+ T cells downregulated genes associated with leukocyte extravasation. In vitro, HDAC1-deficient CD4+ T cells displayed aberrant morphology and migration on surfaces coated with integrin LFA-1 ligand ICAM-1 and showed an impaired ability to arrest on and to migrate across a monolayer of primary mouse brain microvascular endothelial cells under physiological flow. Moreover, HDAC1 deficiency reduced homing of CD4+ T cells into the intestinal epithelium and lamina propria preventing weight-loss, crypt damage and intestinal inflammation in adoptive CD4+ T cell transfer colitis. This correlated with reduced expression levels of LFA-1 integrin chains CD11a and CD18 as well as of selectin ligands CD43, CD44 and CD162 on transferred circulating HDAC1-deficient CD4+ T cells. Our data reveal that HDAC1 controls T cell-mediated autoimmunity via the regulation of CD4+ T cell trafficking into the CNS and intestinal tissues.


Assuntos
Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Quimiotaxia de Leucócito/imunologia , Histona Desacetilase 1/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Animais , Biomarcadores , Adesão Celular , Quimiotaxia de Leucócito/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Encefalomielite Autoimune Experimental/diagnóstico , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Células Endoteliais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histona Desacetilase 1/genética , Imuno-Histoquímica , Inflamação/diagnóstico , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout
4.
Front Immunol ; 12: 750466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003062

RESUMO

T helper (Th) 17 cells are not only key in controlling infections mediated by extracellular bacteria and fungi but are also triggering autoimmune responses. Th17 cells comprise heterogeneous subsets, some with pathogenic functions. They can cease to secrete their hallmark cytokine IL-17A and even convert to other T helper lineages, a process known as transdifferentiation relying on plasticity. Both pathogenicity and plasticity are tightly linked to IL-23 signaling. Here, we show that the protein tyrosine kinase Tec is highly induced in Th17 cells. Th17 differentiation was enhanced at low interleukin-6 (IL-6) concentrations in absence of Tec, which correlates with increased STAT3 phosphorylation and higher Il23r expression. Therefore, we uncovered a function for Tec in the IL-6 sensing via STAT3 by CD4+ T cells, defining Tec as a fine-tuning negative regulator of Th17 differentiation. Subsequently, by using the IL-17A fate mapping mouse combined with in vivo adoptive transfer models, we demonstrated that Tec not only restrained effector Th17 differentiation but also pathogenicity and plasticity in a T-cell intrinsic manner. Our data further suggest that Tec regulates inflammatory Th17-driven immune responses directly impacting disease severity in a T-cell-driven colitis model. Notably, consistent with the in vitro findings, elevated levels of the IL-23 receptor (IL-23R) were observed on intestinal pre- and postconversion Th17 cells isolated from diseased Tec-/- mice subjected to adoptive transfer colitis, highlighting a fundamental role of Tec in restraining IL-23R expression, likely via the IL-6-STAT3 signaling axis. Taken together, these findings identify Tec as a negative regulator of Th17 differentiation, pathogenicity, and plasticity, contributing to the mechanisms which help T cells to orchestrate optimal immune protection and to restrain immunopathology.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Inflamação/imunologia , Intestinos/imunologia , Proteínas Tirosina Quinases/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular/imunologia , Inflamação/patologia , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Tirosina Quinases/metabolismo , Células Th17/patologia
5.
Adv Immunol ; 147: 1-59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32981634

RESUMO

Reversible lysine acetylation of histones is a key epigenetic regulatory process controlling gene expression. Reversible histone acetylation is mediated by two opposing enzyme families: histone acetyltransferases (HATs) and histone deacetylases (HDACs). Moreover, many non-histone targets of HATs and HDACs are known, suggesting a crucial role for lysine acetylation as a posttranslational modification on the cellular proteome and protein function far beyond chromatin-mediated gene regulation. The HDAC family consists of 18 members and pan-HDAC inhibitors (HDACi) are clinically used for the treatment of certain types of cancer. HDACi or individual HDAC member-deficient (cell lineage-specific) mice have also been tested in a large number of preclinical mouse models for several autoimmune and autoinflammatory diseases and in most cases HDACi treatment results in an attenuation of clinical disease severity. A reduction of disease severity has also been observed in mice lacking certain HDAC members. This indicates a high therapeutic potential of isoform-selective HDACi for immune-mediated diseases. Isoform-selective HDACi and thus targeted inactivation of HDAC isoforms might also overcome the adverse effects of current clinically approved pan-HDACi. This review provides a brief overview about the fundamental function of HDACs as epigenetic regulators, highlights the roles of HDACs beyond chromatin-mediated control of gene expression and summarizes the studies showing the impact of HDAC inhibitors and genetic deficiencies of HDAC members for the outcome of autoimmune and autoinflammatory diseases with a focus on rheumatoid arthritis, inflammatory bowel disease and experimental autoimmune encephalomyelitis (EAE) as an animal model of multiple sclerosis.


Assuntos
Artrite Reumatoide/metabolismo , Cromatina/genética , Histona Desacetilases/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Esclerose Múltipla/metabolismo , Animais , Artrite Reumatoide/tratamento farmacológico , Autoimunidade , Epigênese Genética , Histona Desacetilases/genética , Histona Desacetilases/uso terapêutico , Histonas/metabolismo , Humanos , Inflamação , Doenças Inflamatórias Intestinais/tratamento farmacológico , Terapia de Alvo Molecular , Esclerose Múltipla/tratamento farmacológico
6.
Front Immunol ; 11: 579, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318068

RESUMO

The differentiation of naïve CD4+ T cells into T helper (Th) subsets is key for a functional immune response and has to be tightly controlled by transcriptional and epigenetic processes. However, the function of cofactors that connect gene-specific transcription factors with repressive chromatin-modifying enzymes in Th cells is yet unknown. Here we demonstrate an essential role for nuclear receptor corepressor 1 (NCOR1) in regulating naïve CD4+ T cell and Th1/Th17 effector transcriptomes. Moreover, NCOR1 binds to a conserved cis-regulatory element within the Ifng locus and controls the extent of IFNγ expression in Th1 cells. Further, NCOR1 controls the survival of activated CD4+ T cells and Th1 cells in vitro, while Th17 cell survival was not affected in the absence of NCOR1. In vivo, effector functions were compromised since adoptive transfer of NCOR1-deficient CD4+ T cells resulted in attenuated colitis due to lower frequencies of IFNγ+ and IFNγ+IL-17A+ Th cells and overall reduced CD4+ T cell numbers. Collectively, our data demonstrate that the coregulator NCOR1 shapes transcriptional landscapes in CD4+ T cells and controls Th1/Th17 effector functions.


Assuntos
Diferenciação Celular/imunologia , Correpressor 1 de Receptor Nuclear/imunologia , Células Th1/imunologia , Células Th17/imunologia , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/imunologia , Colite/imunologia , Camundongos , Transcrição Gênica
7.
JCI Insight ; 5(4)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32102981

RESUMO

Some effector CD4+ T cell subsets display cytotoxic activity, thus breaking the functional dichotomy of CD4+ helper and CD8+ cytotoxic T lymphocytes. However, molecular mechanisms regulating CD4+ cytotoxic T lymphocyte (CD4+ CTL) differentiation are poorly understood. Here we show that levels of histone deacetylases 1 and 2 (HDAC1-HDAC2) are key determinants of CD4+ CTL differentiation. Deletions of both Hdac1 and 1 Hdac2 alleles (HDAC1cKO-HDAC2HET) in CD4+ T cells induced a T helper cytotoxic program that was controlled by IFN-γ-JAK1/2-STAT1 signaling. In vitro, activated HDAC1cKO-HDAC2HET CD4+ T cells acquired cytolytic activity and displayed enrichment of gene signatures characteristic of effector CD8+ T cells and human CD4+ CTLs. In vivo, murine cytomegalovirus-infected HDAC1cKO-HDAC2HET mice displayed a stronger induction of CD4+ CTL features compared with infected WT mice. Finally, murine and human CD4+ T cells treated with short-chain fatty acids, which are commensal-produced metabolites acting as HDAC inhibitors, upregulated CTL genes. Our data demonstrate that HDAC1-HDAC2 restrain CD4+ CTL differentiation. Thus, HDAC1-HDAC2 might be targets for the therapeutic induction of CD4+ CTLs.


Assuntos
Linfócitos T CD4-Positivos/citologia , Diferenciação Celular/fisiologia , Histona Desacetilase 1/fisiologia , Histona Desacetilase 2/fisiologia , Linfócitos T Citotóxicos/fisiologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Ácidos Graxos/farmacologia , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Humanos , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...